Some Alternative Views in Modern Physics I from Administrator's blog

The Nature of the Gravitational Field (by Antoine Acke): In this article we show that the introduction of g-information as the substance of the gravitational field and the hypothesis that the constitutive elements of this substance are informatons, permits to explain the - by experiments confirmed - nature of that field.

The Schrodinger-Equation Presentation of Any Oscillatory Classical Linear System that Is Homogeneous and Conservative (by Steven K. Kauffmann):

The time-dependent Schrodinger equation with time-independent Hamiltonian matrix is a homogeneous linear oscillatory system in canonical form. We investigate whether any classical system that itself is linear, homogeneous, oscillatory and conservative is guaranteed to linearly map into a Schrodinger equation. Such oscillatory classical systems can be analyzed into their normal modes, which are mutually independent, uncoupled simple harmonic oscillators, and the equation of motion of such a system linearly maps into a Schrodinger equation whose Hamiltonian matrix is diagonal, with h times the individual simple harmonic oscillator frequencies as its diagonal entries. Therefore if the coupling-strength matrix of such an oscillatory system is presented in symmetric, positive-definite form, the Hamiltonian matrix of the Schrodinger equation it maps into is h-bar times the square root of that coupling-strength matrix. We obtain a general expression for mapping this type of oscillatory classical equation of motion into a Schrodinger equation, and apply it to the real-valued classical Klein-Gordon equation and the source-free Maxwell equations, which results in relativistic Hamiltonian operators that are strictly compatible with the correspondence principle. Once such an oscillatory classical system has been mapped into a Schrodinger equation, it is automatically in canonical form, making second quantization of that Schrodinger equation a technically simple as well as a physically very interpretable way to quantize the original classical system.

Nonlinear Theory of Elementary Particles Part XIV: On Photon and Electron Structure (by Alexander G. Kyriakos)

In the present article is shown the equivalence of the description of particles as point-like in the framework of quantum theory and as non-point-like in the framework of the nonlinear theory of elementary particles (NTEP). It is shown that non-point electron explains many peculiarities of quantum theory with respect to the classical theory. It is shown that the non-point structure of the electron allows us to calculate the characteristics of the electron and, in particular, to prove the universality of the electron charge.

Previous post     
     Next post
     Blog home
No comments

The Wall

You need to sign in to comment